

#### Visualize and Analyze MODIS Imagery using GLIDER Tool

#### **Dr. Rahul Ramachandran**

Information Technology and Systems Center University of Alabama Huntsville rramachandran@itsc.uah.edu

http://miningsolutions.itsc.uah.edu/glider/

A data/tools workshop on GLIDER and HYDRA June 2010, Taipei, Taiwan



## Goals

- Explore "information extraction" from remotely sensed data
  - Look at one of the most popular NASA datasets MODIS
  - Learn about the GLIDER tool



### **Remote Sensing Process**

- Definition systematic data collection and analysis procedures used for Earth Science application
- Focus on analysis information extraction!



### **Remote Sensing Data: Basics**

• A sensor is measuring electromagnetic radiance L

$$L = f(\lambda, s_{x,y,z}, t, \theta, P, \Omega)$$

- Wavelength or Frequency
- Location and size
- Temporal information when and how often
- Angles that describe geometric relationships
- Polarization
- Radiometric resolution



### MODIS – Level 1

#### MODIS Reflected Solar Bands

|          | Primary Use     | Band<br>No. | Bandwidth<br>(nm) | Spectral<br>Radiance | Required SNR |
|----------|-----------------|-------------|-------------------|----------------------|--------------|
| 250 M    | Land/Cloud      | 1**         | 620-670           | 21.8                 | 128          |
| 250 WI ~ | Boundaries      | 2**         | 841-876           | 24.7                 | 201          |
|          | Land/Cloud      | 3*          | 459-479           | 35.3                 | 243          |
| /        | Properties      | 4*          | 545-565           | 29.0                 | 228          |
| 500 M    |                 | 5*          | 1230-1250         | 5.4                  | 74           |
|          |                 | 6*          | 1628-1652         | 7.3                  | 275          |
|          |                 | 7*          | 2105-2155         | 1.0                  | 110          |
|          | Ocean Color/    | 8           | 405-420           | 44.9                 | 880          |
|          | Phytoplankton/  | 9           | 438-448           | 41.9                 | 838          |
|          | Biogeochemistry | 10          | 483-493           | 32.1                 | 802          |
|          |                 | 11          | 526-536           | 27.9                 | 754          |
|          |                 | 12          | 546-556           | 21.0                 | 750          |
|          |                 | 13          | 662-672           | 9.5                  | 910          |
|          |                 | 14          | 673-683           | 8.7                  | 1087         |
|          |                 | 15          | 743-753           | 10.2                 | 586          |
|          |                 | 16          | 862-877           | 6.2                  | 516          |
|          | Atmospheric     | 17          | 890-920           | 10.0                 | 167          |
|          | Water Vapor     | 18          | 931-941           | 3.6                  | 57           |
|          |                 | 19          | 915-965           | 15.0                 | 250          |

\* 500m Spatial Resolution

\*\* 250m Spatial Resolution

Spectral Radiance values are in W/m^2-um-sr SNR = Signal-to-noise ratio

#### Radiances are converted to reflectances

# MODIS – Level 1

#### MODIS Thermal Bands

| Primary Use   | Band | Bandwidth<br>(μm) | Spectral<br>Radiance | Required NEDT<br>(K) |  |
|---------------|------|-------------------|----------------------|----------------------|--|
| Surface/Cloud | 20   | 3.660-3.840       | 0.45(300K)           | 0.05                 |  |
| Temperature   | 21   | 3.929-3.989       | 2.38(335K)           | 2.00                 |  |
|               | 22   | 3.929-3.989       | 0.67(300K)           | 0.07                 |  |
|               | 23   | 4.020-4.080       | 0.79(300K)           | 0.07                 |  |
| Atmospheric   | 24   | 4.433-4.498       | 0.17(250K)           | 0.25                 |  |
| Temperature   | 25   | 4.482-4.549       | 0.59(275K)           | 0.25                 |  |
| Cirrus Clouds | 26   | 1.360-1.390       | 6.00                 | 150 (SNR)            |  |
| Water Vapor   | 27   | 6.535-6.895       | 1.16(240K)           | 0.25                 |  |
|               | 28   | 7.175-7.475       | 2.18(250K)           | 0.25                 |  |
|               | 29   | 8.400-8.700       | 9.58(300K)           | 0.05                 |  |
| Ozone         | 30   | 9.580-9.880       | 3.69(250K)           | 0.25                 |  |
| Surface/Cloud | 31   | 10.780-11.280     | 9.55(300K)           | 0.05                 |  |
| Temperature   | 32   | 11.770-12.270     | 8.94(300K)           | 0.05                 |  |
| Cloud Top     | 33   | 13.185-13.485     | 4.52(260K)           | 0.25                 |  |
| Altitude      | 34   | 13.485-13.785     | 3.76(250K)           | 0.25                 |  |
|               | 35   | 13.785-14.085     | 3.11(240K)           | 0.25                 |  |
|               | 36   | 14.085-14.385     | 2.08(220K)           | 0.35                 |  |

Spectral Radiance values are in W/m^2-um-sr NEDT = Noise-equivalent temperature difference

#### Radiances are converted to temperature

## **Remote Sensing Data Analysis**

- Radiometric Correction of Remote Sensor Data
  - Noise, error removal, calibration
- Geometric Correction of Remote Sensor Data
  - Map projections, Geographic Coordinate System
- Image Enhancement
  - Contrast stretching, Spatial/Frequency Filters, PCA
- Information Extraction
  - Parametric/Non parametric classifiers
  - Heuristic based indices



### **GLIDER** - motivation

- Software tools that allow users to visualize, analyze and mine satellite imagery are currently limited.
- Available commercial packages are expensive.
- None of these packages provide all the GLIDER features



## **GLIDER Features**

- *Visualize and analyze* satellite data in its native sensor view.
- Apply different *image processing algorithms* on the satellite data.
- Apply different *pattern recognition/data mining algorithms* on the satellite data.
- *Project* satellite data and analysis/mining results onto a globe and overlay additional layers.
- Provides *multiple views* to manage, visualize, and analyze satellite data.



## GLIDER is using:

- ADaM
  - ADaM (Algorithm Development and Mining) toolkit
  - Contains 140+ image processing, pattern recognition and machine learning algorithms
- IVICS
  - Interactive Visualizer and Image Classifier for Satellites (IVICS)
  - Provides capability to visualize satellite imagery and select samples for supervised classification
- World Wind
  - Project satellite data and analysis/mining results onto a globe and overlay additional layers



#### GLIDER Views: Project Explorer





#### GLIDER Views: Image Analysis View

#### Analyze image using different features

# Apply data mining algorithms



#### **Image Analysis Features**



## **Clustering Algorithm Example**





#### GLIDER Views: Earth View



#### GLIDER Views: Workflow Composer



# Learning Modules

- Module 1: "Midnight Oil"
  - Look at the Deepwater Horizon event
  - Learn basic GLIDER functionality while playing with several MODIS data files
- Module 2: "Smoke on the Water"
  - Learn how to create False color composites to visually separate features in MODIS data [Courtesy – Dr. Sundar Christopher, UAHuntsville]
- Module 3: "Dust in the wind"
  - Learn how to use band math feature in GLIDER to create indices
  - Use indices to detect dust
  - Browse a journal article and then apply the results from the paper to detect dust over china
- Module 4: "Ashes to Ashes" Part 1
  - Look at Ash/Steam Plume event from Iceland's Eyjafjallajoekull Volcano
  - Learn how to subset imagery both spatially and spectrally
  - Apply clustering algorithm to generate classification maps
- Module 5: "Ashes to Ashes" Part 2
  - Learn to construct a supervised classification process
  - Learn how take training samples
  - Create a *mining recipe/workflow* using visual programming

UAHuntsville

Pop Music Trivia – do you know what the titles of these modules refer to?

# Learning Module 1

"Midnight Oil" —Look at the Deepwater Horizon event —Learn basic GLIDER functionality while playing with several MODIS data files



#### **Deepwater Horizon**

| Deepwater Horizon                         |                                                                              |                                                                                                                                               |
|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| The DEEPWATER HOR<br>environments and wat | IZON is a Reading & Bates Falcon RB<br>er depths up to 8,000 ft (upgradeable | S8D design semi-submersible drilling unit capable of operating in harsh<br>to 10,000 ft) using 18¾in 15,000 psi BOP and 21in OD marine riser. |
| Rig Туре                                  | Sth Generation<br>Deepwater                                                  |                                                                                                                                               |
| Design                                    | Reading & Bates Falcon<br>RBS-8D                                             |                                                                                                                                               |
| Builder                                   | Hyundai Heavy<br>Industries Shipyard,<br>Ulsan, South Korea                  |                                                                                                                                               |
| Year Built                                | 2001                                                                         |                                                                                                                                               |



### **Deepwater Horizon Event**



- April 20: At around 10 p.m. a fire is reported on the central time on the Deepwater Horizon rig. Eleven workers are killed
- At least 20 million gallons have now spilled into the Gulf of Mexico, affecting more than 70 miles (110km) of Louisiana's coastline.



Photos | Flickr | CO

June 04, 2010 Secretary of Homeland Security; National Incident Commander Submit Letter to

### Setting Up a Project in GLIDER

| Project Explorer | □ 🔄 🏹                         | ProcessedSamples.arff | TestSa          | Project | t Explorer           |                                                   | 🖹 🔄 🏹 📄 Processe | dSamples.arff            |
|------------------|-------------------------------|-----------------------|-----------------|---------|----------------------|---------------------------------------------------|------------------|--------------------------|
| 🗄 🗁 ESPhenomena  | a                             | @relation GLIDER_S    | amples          | 🗉 🗁 ES  | 5Phenomena           |                                                   | Ørela            | tion GLIDER              |
|                  |                               | Mettribute ch0:0 0    | 100000.         |         |                      |                                                   | Øattr            | ibute ch0:0              |
|                  | S New Project                 |                       |                 |         | New Project          |                                                   |                  | h2:0                     |
|                  | Select a wizard               |                       | 00:             | Pi      | roject               |                                                   | ~                | h30:                     |
|                  | Create a new project resource |                       | 1000            | (i      | Project location dir | irectory must be specified                        | T                | h31:                     |
|                  |                               |                       |                 |         |                      |                                                   |                  |                          |
|                  | Wizards:                      |                       |                 |         | Project name: Taiv   | iwanWorkshop                                      |                  | o.                       |
|                  | type filter text              |                       | 15              |         | Use default loca     | ation                                             |                  | 0.                       |
|                  | 🖆 Project                     |                       | :2              |         | Location:            |                                                   | Brows            | se 0.                    |
|                  |                               |                       | 5               |         | -Working sets        | owse For Folder                                   |                  | o.                       |
|                  |                               |                       |                 |         | Add proje            |                                                   |                  | o.                       |
|                  |                               |                       |                 |         | Working sets         | elect the location directory.                     |                  | . O.<br>O.               |
|                  |                               |                       | <b>1</b> 6      |         |                      | 🕀 🦳 Darl                                          |                  | 0.                       |
|                  |                               |                       | 7               |         |                      | 🗉 🦲 Personal                                      |                  | 0.                       |
|                  |                               |                       | .6              |         |                      | Posters and Brochures Image: Image: Presentations |                  | 0.                       |
|                  |                               |                       | 4               |         |                      | 🖃 🧰 Projects                                      |                  | 0.                       |
|                  |                               |                       | 0               |         |                      |                                                   |                  | 0.<br>0.                 |
|                  |                               |                       | 5               |         |                      | ⊞                                                 |                  | 0.                       |
|                  |                               |                       | 8               |         |                      | ESPhenomena                                       |                  | 0.                       |
|                  | 🔛 🖓 GI                        | .IDER                 |                 | ` _     |                      | 🛅 BPOilSpill<br>🛅 DustStorm                       | China            | o.                       |
|                  | < Back File                   | Edit Tools Help       |                 |         | 2                    | 🚬 🛅 IcelandVol                                    | cano 🔽           | 23735 0.                 |
|                  |                               | 🗁 🔜  🔙 🖷 🖂            | f 🗈 🗈 i 🖶 i 🖢 - | 신 -     | : 🎨 : 🔳              | 1                                                 | >                | 32323 0.<br>32105 0.     |
|                  | 🗖 P                           | roject Explorer       |                 | E       | 3 🔩 🍸 🗋              | Processe SPhenomena                               |                  | 137903 0.<br>136164 0.   |
|                  |                               | ESPhenomena           |                 |         |                      | Ørela <sub>Folder</sub> OK                        | Cancel           | 86618 0.                 |
|                  | ė~1                           | 🔁 TaiwanWorkshop      |                 |         |                      |                                                   |                  |                          |
|                  |                               | E Commodule1          |                 |         |                      | 0attr<br>0attr                                    |                  |                          |
|                  |                               | ±~~ Modulez           |                 |         |                      | gattr<br>Rattr                                    |                  |                          |
|                  |                               |                       |                 |         |                      | Gattr                                             |                  |                          |
|                  |                               |                       |                 |         |                      | @attr                                             |                  |                          |
|                  |                               |                       |                 |         |                      | Øattr                                             |                  |                          |
|                  |                               |                       |                 |         |                      | Adata                                             |                  |                          |
|                  |                               |                       |                 |         |                      | 0.                                                |                  |                          |
|                  |                               |                       |                 |         |                      | o. 🏼                                              | UAH              | untsville                |
|                  |                               |                       |                 |         |                      | · -                                               | - Contrastit     | OF ALMEANA IN HUNISTILLE |

### Convert L1 HDF to GLD File



### Image View

- Open MOD021KM.A2010112.1645.005.2010113013428.hdf.gld
- Smoke from the fire is clearly visible



## **Apply Histogram Equalization**





#### Result



### **Proving Spatial Context**



# Oil Spill Image

- Open MOD021KM.A2010137.1640.005.2010138011841.hdf.gld, apply histogram equalization
- Sun glint in this image makes the oil easily visible



# DIY

- Open and visualize the other two gld files
- Change the order of the layers on Earth View



# Learning Module 2

"Smoke on the Water" –Learn how to create False color composites to visually separate features in MODIS data [Courtesy of Dr. Sundar Christopher, UAHuntsville]



## **Color Composite**



Yellow is a mix of red and green; orange is a mix of more red and some green; white is an equal mix of all three primaries, and black is simply the absence of any colored light of any wavelength



#### Spectral Signatures of Aerosols and Clouds



Wavelengths of interest: 0.645um, 0.858 um, 11.03 um



#### Image View



Equalize is an image enhancement technique called histogram equalization and flip inverts the infrared channel to make clouds look brighter than the surface

### Earth View

| 😂 GLIDER                                                         |
|------------------------------------------------------------------|
| File Edit Tools Help                                             |
|                                                                  |
| Earth View X                                                     |
| Tools                                                            |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
| GUIPOT CENTONIE                                                  |
| Gulf of Mexico                                                   |
|                                                                  |
| Straite of Florida                                               |
|                                                                  |
|                                                                  |
| Stars                                                            |
| 🗖 Atmosphere                                                     |
| NASA Blue Marble Image                                           |
| Elue Marbie (WMS) 2004                                           |
|                                                                  |
| 🗆 🗆 MS Virtual Earth Aerial                                      |
| USGS Urban Area Ortho                                            |
| Political Boundaries                                             |
| E World Map                                                      |
| Scale bar                                                        |
| SMOKE-MOD021KM.A2007131.1630.005.2007132025347.hdf.gld           |
| E Status Laver                                                   |
| 🗖 Layer List                                                     |
| Attitude 6,354 km Lat 35.0837° Lon - 108.7093° Elev 2,100 meters |
|                                                                  |

# Learning Module 3

#### "Dust in the Wind"

-Learn how to use band math feature in GLIDER to create indices

-Use indices to detect airborne dust

-Browse a journal article and then apply the results from the paper to detect dust over china



### NDDI - Qu et al, 2006

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006

#### Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements

John J. Qu, Member, IEEE, Xianjun Hao, Member, IEEE, Menas Kafatos, Member, IEEE, and Lingli Wang



NDDI = 
$$(\rho_{2.13\,\mu\text{m}} - \rho_{0.469\,\mu\text{m}})/(\rho_{2.13\,\mu\text{m}} + \rho_{0.469\,\mu\text{m}})$$
 (1)

The spectral characteristic of sand suggests that strong SDS signals can be obtained using the difference between the 2.13- $\mu$ m band signal, which is high, and the 0.469- $\mu$ m band, where the signal is relatively much lower. This difference distinguishes rather well between SDS and water or ice clouds.

SRB – Solar Reflectance Band NDDI – Normalized Difference Dust Index SDS – Sand and Dust Storms



#### NDDI – Qu et al, 2006



Fig. 3. (a) Terra MODIS true-color image (3:40 UTC, March 27, 2004) shows Asian dust storm over Northern China and Southern Mongolian regions. (b) Terra MODIS NDDI image shows the clouds and dust storms. The cloud and dust storm can be easily identified (for cloud NDDI < 0.0 and for dust storm NDDI > 0.28).

#### Thresholds for detection: CLOUDS: NDDI < 0.0 SURFACE FEATURES: NDDI < 0.28 DUST: NDDI > 0.28


## Lets Try it Out!

#### Open MOD021KM.A2001096.0335.005.2008042073533.hdf.gld in Image View



# Enter the NDDI formula

Enter a Mathematical expression Bind bands to the variables Bands avail 0 1 [0.6]

| 🛾 Band Math Evaluator 🛛 🛛 🕤                             |  |
|---------------------------------------------------------|--|
| Enter an expression :                                   |  |
| (b7-b3)/(b7+b3) Add                                     |  |
| Load Save Delete Clear                                  |  |
|                                                         |  |
| Expression : (b7-b3)/(b7+b3)                            |  |
| Variables used :                                        |  |
| b7 : 7 [2.1300μ]                                        |  |
| D3 : 3 [0.4690µ]                                        |  |
|                                                         |  |
| Bands available :                                       |  |
| 0) 1 [0.6450µ]                                          |  |
| 1) 2 [0.8580µ]<br>2) 3 [0.4690µ]                        |  |
| 3) 4 [0.5550µ]<br>4) 5 [1.2400µ]                        |  |
| 5) 6[1.6400µ]                                           |  |
| <ul><li>6) 7 [2.1300μ]</li><li>7) 8 [0.4120μ]</li></ul> |  |
| 8) 9 [0.4430µ]<br>9) 10 [0.4880µ]                       |  |
| 10) 11[0.5310µ]                                         |  |
| 12) 13lo [0.6670µ]                                      |  |
| 13) 13hi [0.6670µ]<br>14) 14lo [0.6780µ]                |  |
| Rind variable to hand                                   |  |
|                                                         |  |
| Output file name i                                      |  |
| Cutput nie Hallie :                                     |  |
| C: (Projects (2010(1) Browse                            |  |
|                                                         |  |
| Run Run in Background Reset                             |  |

| Band Math                                                                 |
|---------------------------------------------------------------------------|
| Expression : (b7-b3)/(b7+b3)                                              |
| Bindings : [b3 : 3 [0.4690µ]]<br>[b7 : 7 [2.1300µ]]                       |
| Output : C:\MyFiles\Projects\2010\TaiwanWorkshop\Module3\A2001096NDDI.gld |
| Run in Background Cancel                                                  |



# Visualize Result in Image View and Apply a Custom Color Map

😑 🗁 TaiwanWorkshop

| E Module 1                                       |                                             |                               |
|--------------------------------------------------|---------------------------------------------|-------------------------------|
| B B Module2                                      |                                             |                               |
|                                                  | fic                                         |                               |
| MOKE-MOD021KM.A2007131.1630.005.2007132025347.   | he                                          |                               |
| 🖻 🧀 Module3                                      |                                             |                               |
| A2001096NDDI.gld                                 |                                             |                               |
| John_Qu_etal.pdf                                 | 😂 GLIDER                                    |                               |
| MOD021KM.A2001096.0335.005.2008042073533.hdf     | File Edit Tools Help                        |                               |
| MODUZIKM.AZUU1096.0335.005.2008042073533.nar.gla |                                             |                               |
| MOD021KM.A2010115.0545.005.2010115132350.hdf.ald |                                             |                               |
|                                                  |                                             |                               |
|                                                  | Sample * Tools * Display * Window *         | Channels available :          |
|                                                  |                                             | 0) (b7-b3)/(b7+b3)            |
|                                                  |                                             | 40) Latitude<br>41) Longitude |
|                                                  |                                             |                               |
|                                                  |                                             |                               |
|                                                  |                                             | Calan have () calue bables :  |
|                                                  | Look in: 🎦 Module3 🛛 🕑 🗊 -                  | Temperature (180K-330K)       |
|                                                  |                                             | MODIS MOD35 Cloud mask LUT    |
|                                                  |                                             | Fixed range colorbar (0-100)  |
|                                                  | My Heent<br>Documents                       | Reflectance (U-1)             |
|                                                  |                                             |                               |
|                                                  |                                             |                               |
|                                                  | Desktop                                     |                               |
|                                                  |                                             | Load from file                |
|                                                  | 🖉 I oad external color table 🖉              | Color Map :                   |
|                                                  | My Documenta                                |                               |
|                                                  |                                             |                               |
|                                                  |                                             |                               |
|                                                  | My Computer                                 |                               |
|                                                  |                                             |                               |
|                                                  | File name: NDDILUT.txt Upen                 |                               |
|                                                  | My Network Files of type: Text Files Cancel |                               |
|                                                  |                                             | Apply Color Map               |
|                                                  |                                             |                               |
|                                                  |                                             |                               |
|                                                  | × · · · · · · · · · · · · · · · · · · ·     |                               |
|                                                  |                                             |                               |
|                                                  | Pixel 1121, 2 Region Size                   |                               |
|                                                  |                                             |                               |

## Display Original and NDDI image on Earth View



Toggle Layer On/Off To visually inspect how well NDDI works in Detecting dust



# DIY

• Apply NDDI using Band Math feature in GLIDER to the other MODIS granule



# Learning Module 4

#### "Ashes to Ashes" – Part 1

-Look at Ash/Steam Plume event from Iceland's Eyjafjallajoekull Volcano

-Learn how to subset imagery both spatially and spectrally

-Apply clustering algorithm to generate classification maps



# What is Cluster Analysis?

- Cluster: a collection of data objects
  - Similar to one another within the same cluster
  - Dissimilar to the objects in other clusters
- Cluster analysis
  - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes



# Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: *Minkowski distance*:  $d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$

where  $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two *p*-dimensional data objects, and *q* is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$



# Similarity and Dissimilarity Between Objects (Cont.)

• If 
$$q = 2$$
,  $d$  is Euclidean distance:  

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + ... + |x_{i_p} - x_{j_p}|^2)}$$

- Properties
  - $d(i,j) \ge 0$
  - d(i,i) = 0
  - d(i,j) = d(j,i)
  - $d(i,j) \leq d(i,k) + d(k,j)$

What should one look out for when using distance measures?

 Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures
 Source - Dr. John Rushing, ITSC/UAHuntsville

#### The K-Means Clustering Method

- Given *k*, the *k*-means algorithm is implemented in four steps:
  - Partition objects into k nonempty subsets
  - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
  - Assign each object to the cluster with the nearest seed point
  - Go back to Step 2, stop when no more new assignment



#### The K-Means Clustering Method

• Example



# Let's Apply a Clustering Algorithm

- Goal Create a thematic/classification map using MODIS L1B data with three classes: Clouds, Ash/Steam and Ocean
- Methodology:
  - Subset the data both spatially and spectrally
  - Apply K-Means with k=5 and let the algorithm find groups in spectral feature space
  - Assign semantic (3) classes to the 5 groups



# Lets Apply a Clustering Algorithm

- •Open MOD021KM.A2010105.1135.005.2010105201236.hdf.gld in Image View and Earth View
- Locate the Ash/Steam in the image





# Look at the Spectral Signatures for Clouds, Ash/Steam and Ocean



#### Spatially and Spectrally Subset Data





Select an area within the Image View, then select Bands, provide output filename (subset.gld) and hit Run button. Go to Project View and load subset.gld in Image View

# Apply KMeans Algorithm



- Only select the spectral bands
- Make sure you select normalize channels
- Set the # of clusters to 5 even though we only want three final classes
- We will merge clusters at the end!



#### Visualize Result in Image View



Lets merge classes to create a map with only three classes **DAHuntsville** Load the ClassLUT.txt Color Map

# Final Clustering Result



# Learning Module 5

#### "Ashes to Ashes" – Part 2

- Learn how to construct a supervised classification process
- Learn how take training samples
- Create a *mining recipe/workflow* using visual programming



#### Simple Classification Example

Given a dataset containing student's names, weight and height, develop rules to classify between Football players and non-Football Players

Height

| Name           | Height | Weight |
|----------------|--------|--------|
| Joe<br>Montana | 6'4"   | 230    |
| ••••           | •••••  |        |
| Avg Joe        | 5'9"   | 180    |



Classification Rule: If Ht > 6'3" AND Wt > 220 lb THEN Football Player Else Regular Student **UAHuntsville** 

## **Classification Problem**

- Satellite Remote Sensing: Features can be spectral bands and other derived parameters (textures, ratios etc)
- Real Life Problems: Features are MANY!
- One can limit the problem using Heuristics (e.g., NDDI)
- Human's cannot visualize beyond 3 dimensions
- Hence, need for Pattern Recognition/Data Mining algorithms



# Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
  - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
  - The set of tuples used for model construction is training set
  - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
  - Estimate accuracy of the model
    - The known label of test sample is compared with the classified result from the model
    - Accuracy rate is the percentage of test set samples that are correctly classified by the model
    - Test set is independent of training set, otherwise over-fitting will occur
  - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known



# Classification Process (1): Model Construction







#### Maximum Likelihood/Bayes Classifier

- The maximum likelihood decision rule is based on probability.
- It assigns each pixel having pattern measurements or features X to the class i whose units are most probable or likely to have given rise to feature vector X.
- In other words, the probability of a pixel belonging to each of a predefined set of *m* classes is calculated, and the pixel is then assigned to the class for which the probability is the highest.
- The maximum likelihood procedure assumes that the training data statistics for each class in each band are *normally distributed* (Gaussian).
- The *maximum likelihood decision rule* is still one of the most widely used supervised classification algorithms.



# Maximum Likelihood Classifier

- But how do we obtain the probability information we will need from the remote sensing training data we have collected?
- The answer lies first in the computation of *probability density functions* label samples



#### Maximum Likelihood Classifier

The estimated *probability density function* for class *wi* (e.g., forest) is computed using the equation:

$$\hat{p}(x \mid w_i) = \frac{1}{(2\pi)^{\frac{1}{2}} \hat{\sigma}_i} \exp \left[ -\frac{1}{2} \frac{(x - \hat{\mu}_i)^2}{\hat{\sigma}_i^2} \right]$$



## Maximum Likelihood Classifier

But what if the training data consists of multiple bands of remote sensor data for the classes of interest? In this case we compute an *n*-dimensional multivariate normal density function using:

$$p(X \mid w_i) = \frac{1}{(2\pi)^{\frac{n}{2}} |V_i|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(X - M_i)^T V_i^{-1}(X - M_i)\right]$$

M: Mean Vector V: Covariance Matrix





In this case, pixel X would be assigned to forest because the probability density of unknown measurement vector X is greater for forest than for agriculture.



# Let's try Supervised Classification

- Goal Create a thematic/classification map using MODIS L1B data with three classes: Clouds, Ash/ Steam and Ocean
- Methodology:
  - Create a NEW Subsetted data (keep all bands)
  - Take uniform and approximate equal number of samples for the three classes
  - Construct and test the model (train and apply)
  - Use the model for prediction (apply on the original image)



# Select Samples for the 3 Classes





#### **Select Samples**



After you have taken enough samples (~1000) for the three classes, save samples as <filename>.gs





# **Convert Samples to ARFF**





# **Open Workflow Composer**



۲

<

Folder:

Set your workspace to your project folder

Convert Line Delimiters To



OK

>

Cancel

🗄 🧰 Eclipse 🗄 🚞 ESML

Module5

Make New Folder

#### Workflow Composer





# Getting Started with Workflows

- Drag and drop ITSC\_RemoveAttributes from the list to the canvas
- Drag input to the canvas and connect it to one of the ports on the algorithm
- Once you have all the algorithms on canvas, you can use the auto completion feature!


### First Workflow

- Two step workflow: Preprocess.xwf
  - Remove the unwanted spectral bands
  - Split samples randomly into two files one for training the classifier, the other for testing the classifier in an biased manner



### Workflow1: Preprocess - Parameters

- Algorithm1 ITSC\_RemoveAttributes
  - ITSC\_RemoveAttributes\_InputFileName \<your path>\ProcessedSamples.arff

  - ITSC\_RemoveAttributes\_AttributeNamesToRemove null
  - ITSC\_RemoveAttributes\_ClassAttributeName class
  - ITSC\_RemoveAttributes\_AttributeNamesToKeep null
  - ITSC\_RemoveAttributes\_OutputFileName \<your path>\SamplesFiltered.arff
- Algorithm2 ITSC\_Sample
  - ITSC\_Sample\_ClassAttributeName class
  - ITSC\_Sample\_InputFileName -should be connected to the output from ITSC\_RemoveAttributes
  - ITSC\_Sample\_NumberOfSamplesInEachClass null
  - ITSC\_Sample\_NameOutputSetOne \<your path>\TrainSamples.arff
  - ITSC\_Sample\_PortionOfSample 0.5
  - ITSC\_Sample\_Seed null
  - ITSC\_Sample\_NameOutputSetTwo \<your path>\TrainSamples.arff



### Workflow to Train a Classifier

- One step workflow: BayesClassificationTrain.xwf
  - Provide part of the samples to train the classifier
  - Obtain the Bayesian statistics that will be used in the application



NOTE: you can load the existing workflow (BayesClassificationTrain.xwf) if you don't want to create it from scratch!



### Workflow2 - Parameters

- Algorithm ITSC\_BayesClassifierTrain
  - ITSC\_BayesClassifierTrain\_BayesClassifierFileName \<your path>\Bayes.txt
  - ITSC\_BayesClassifierTrain\_ClassAttributeName class
  - ITSC\_BayesClassifierTrain\_InputFileName -\<your path>\TrainSamples.arff



### Workflow to Test a Classifier

- Two step workflow: BayesClassificationApply.xwf
  - Apply the classifier on the second set of samples
  - Evaluate the classification results (class labels produced by the classifier vs class labels given by the experts)



NOTE: you can load the existing workflow (BayesClassificationApply.xwf) if you don't want to create it from scratch!



### Workflow3 - Parameters

- Algorithm1 ITSC\_BayesClassifierApply
  - ITSC\_BayesClassifierApply\_InputFileName \<your path> \TestSamples.arff
  - ITSC\_BayesClassifierApply\_ClassAttributeName class
  - ITSC\_BayesClassifierApply\_BayesClassifierFileName \<your path> \Bayes.txt
  - ITSC\_BayesClassifierApply\_OutputFileName \<your path> \BayesResult.arff
- Algorithm2 ITSC\_Accuracy
  - ITSC\_Accuracy\_ClassAttributeName class
  - ITSC\_Accuracy\_OutputFileName \<your path>\Accuracy.txt
  - ITSC\_Accuracy\_TestSetFileName \<your path>\BayesResult.arff
  - ITSC\_Accuracy\_ValidSetFileName \<your path>\TestSamples.arff



### **Evaluation Result – Accuracy.txt**

ITSC\_Accuracy - Classes 3, Samples 1540 Confusion Matrix | 0 1 2 <--- Actual Class 0 | 487 0 0 1 | 0 421 0 2 | 0 3 629 A +----- Classified As Accuracy 1537 of 1540 (99.805195 Pct)

NOTE: Your numbers may look different!



# Workflow to Apply the Classifier on the Image

- Five step workflow: BayesClassificationFinal.xwf
  - Convert data file from GLIDER format to ARFF
  - Remove the spectral bands that you did not use in training the classifier
  - Apply the Bayes Classifier using the Bayesian statistics generated during the training
  - Convert the classification result to image
  - Convert the image to GLIDER format for visualization



NOTE: you can load the existing workflow (BayesClassificationFinal.xwf) if you don't want to create it from scratch!

### Workflow4 - Parameters

- Algorithm1 ITSC\_GliderToArff
  - GliderInputFileName \<your path>\Subset.gld
  - GliderHeaderOutputFileName \<your path>\Subset.gh
  - ArffOutputFileName \<your path>\Subset.arff
  - BinaryFlag true
- Algorithm2 ITSC\_RemoveAttributes
  - ITSC\_RemoveAttributes\_InputFileName should be connected to the output from ITSC\_GliderToArff

  - ITSC\_RemoveAttributes\_AttributeNamesToRemove null
  - ITSC\_RemoveAttributes\_ClassAttributeName class
  - ITSC\_RemoveAttributes\_AttributeNamesToKeep null
  - ITSC\_RemoveAttributes\_OutputFileName \<your path>\SubsetFilterered.arff
- Algorithm3 ITSC\_BayesClassifyApply
  - ITSC\_BayesClassifierApply\_InputFileName should be connected to the output from ITSC\_RemoveAttributes
  - ITSC\_BayesClassifierApply\_ClassAttributeName Class
  - ITSC\_BayesClassifierApply\_BayesClassifierFileName \<your path>\Bayes.txt
  - ITSC\_BayesClassifierApply\_OutputFileName \<your path>\SubsetBayesResult.arff
- Algorithm4 ITSC\_CvtArffToImage
  - Attribute class
  - ArffInputFileName should be connected to the output from ITSC\_BayesClassifyApply
  - OutputFileName \<your path>\ClassificationMap.img
  - SizeX null
  - SizeY null
  - SizeZ null
- Algorithm5 ITSC\_ImageToGlider
  - ImageInputFileName should be connected to the output from ITSC\_CvtArffToImage
  - GliderHeaderInputFileName \<your path>\Subset.gh
  - GliderOutputFileName ClassificationMap.gld
  - LabelString ClassificationMap
  - CommentString 3 Class result



### **Supervised Classification Result**



### Music Trivia Answers

- Midnight Oil Rock Band from Sydney Australia, also known for their political activism especially regarding environmental causes
- Smoke on the Water Song from Deep Purple, famous for it's guitar riff
- Dust in the Wind Song from Kansas
- Ashes to Ashes Song from David Bowie and has Major Tom (astronaut) references



### Here is your Homework

- Find interesting phenomena observable in satellite imagery
- Order data
- Visualize and analyze using GLIDER
- Submit a microArticle



### Finding Interesting Cases

- Track environmental news (CNN, BBC)
  - Find the location and time
  - Order data, download,



- Track these websites daily:
  - Earth Observatory: http:// earthobservatory.nasa.gov/
  - **Operational Significant Event** Imagery:

#### http://www.osei.noaa.gov/





Printable version



Video and Audio

One resident said it was the worst flooding he had seen in 60 years

More than 1,000 people have been evacuated from an outback town in the Australian state of New South Wales, after days of

### **Ordering MODIS Data**

- <u>http://ladsweb.nascom.nasa.gov/</u>
- Use L1 data instead of data products
- Information about MODIS (pg 95 Jensen's Book)

| GODDARD SP                                                                                                                                                       |                                                                                                                                                         | + Visit NASA.gov                                                                                                                      |                                                          |                                                                                                                                  |                                                |                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|--|
|                                                                                                                                                                  | LAADS Web<br>Level 1 and Atmosphere Archive and Distribution System                                                                                     |                                                                                                                                       |                                                          |                                                                                                                                  |                                                |                                       |  |
| - HOME                                                                                                                                                           | + DATA                                                                                                                                                  | + IMAGES                                                                                                                              | + T00L                                                   | S                                                                                                                                | + HELF                                         | P                                     |  |
| Welcome to LAADS Web Vel<br>Atmosphere Archive and Dist<br>quick and easy access to MOI<br>Data<br>Search, order, and download<br>also be subset by parameter, a | rsion 4! LAADS Web is the<br>ribution System (LAADS). Th<br>DIS level 1 and atmosphere di<br>MODIS level 1 and atmospl<br>area, or band, mosaiced, repr | web interface to the Level 1<br>ne mission of LAADS is to pro<br>ata products.<br>here data products. Products<br>ojected, or masked. | and NEWS<br>wide 12.29<br>The<br>schee<br>11:00<br>+ Rea | .09 - LAADS S<br>LAADS sys<br>duled maintena<br>am - 2:00 pm.<br>id More                                                         | icheduled Mair<br>tem will be<br>ance on Janua | ntenance<br>performing<br>ry 4th from |  |
| Images<br>Visually browse MODIS level 1 and atmosphere data products.                                                                                            |                                                                                                                                                         |                                                                                                                                       |                                                          | 12.28.09 - AQUA Forward Processing<br>Delayed                                                                                    |                                                |                                       |  |
| Tools<br>Access tools to use with MODIS level 1 and atmosphere data products.<br>Help<br>Get help including tutorials and contact information.                   |                                                                                                                                                         |                                                                                                                                       |                                                          | + Read More<br>09.09.09 - TERRA Spacecraft Anomaly<br>Terra experienced 2 more SFE-A anomalies.<br>+ Read More                   |                                                |                                       |  |
| Information about the production, archive and distribution of the data products in LAADS can<br>be found at the MODAPS Services website.                         |                                                                                                                                                         |                                                                                                                                       |                                                          | 08.27.09 - TERRA Spacecraft Anomaly<br>The Terra Spacecraft experienced an anomaly<br>with the Science Formatter Equipment (SEE) |                                                |                                       |  |
| Any questions should be direct<br>on the Contacts page.                                                                                                          | bund today                                                                                                                                              | today, 8/26/09, at 13:56z.<br>+ Read More                                                                                             |                                                          |                                                                                                                                  |                                                |                                       |  |



11.10.08 - Agua Collection 5.1 Data

### Searching for MODIS Granules



#### Search for Level 1 and Atmosphere Products

If you know the file names of the products for which you are searching, you may also search for file names.

| Product Selection                                                                                                      |                    |                   |
|------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| Please select one or more products:                                                                                    | + View Help        |                   |
| Satellite/Instrument:                                                                                                  |                    |                   |
| Terra MODIS 💿 🛛 Aqua MODIS 🔘 Combined Terra & Aqua MODIS 🔘 Ancillary Data 🔘                                            |                    |                   |
| Group:                                                                                                                 |                    |                   |
| Terra Level 1 Products                                                                                                 |                    |                   |
| Products:                                                                                                              |                    |                   |
| MOD01 - Level 1A Scans of raw radiances in counts<br>MOD021KM - Level 1B Calibrated Radiances - 1km                    |                    |                   |
| MOD02HKM - Level 1B Calibrated Radiances - 500m                                                                        |                    |                   |
| MOD020BC - Level 1B Onboard Calibrator/Engineering Data                                                                |                    |                   |
| MODU2QKM - Level 1B Calibrated Radiances - 250m<br>MODU2SSH - MODIS/Terra Level 1B Subsampled Calibrated Radiances 5km |                    |                   |
| MOD03 - Geolocation - 1km                                                                                              |                    |                   |
| MODASRVN - AERONET-based Surface Reflectance Validation Network                                                        |                    |                   |
|                                                                                                                        |                    |                   |
| Please read the disclaimer about the Collection 5 MOD04_L2 and MYD04_L2 products.                                      |                    |                   |
|                                                                                                                        |                    | ntsvill           |
|                                                                                                                        | The enviressity or | ALABAMA IN HUNTSH |

### Use GLIDER to examine the data

• GLIDER: http://miningsolutions.itsc.uah.edu/glider/



## Submit MicroArticles Here:

### www.esphenomena.org

#### **Journal of Earth Science Phenomena**

|                                                  |                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                              |                                                                                                                   | _                                                         |
|--------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Home                                             | About                                                           | Editorial Board                                                                                                                                   | Submission Guidelines                                                                                                                                                                                                                                                                                                                     | Submission Template                                                                                                                                                                                                                                                            | Submit Article                                                                                                                                                               | Sign Up                                                                                      | Contact Us                                                                                                        | 2                                                         |
| User login<br>Us<br>Pa<br>Create<br>Request      | ername: *<br>ssword: *<br>Log in<br>new account<br>new password | Journal of I<br>and unique<br>analysis, bu<br>a manner th<br>linkages to<br>such inform<br>Key JESP F<br>= 100% di<br>= Publishe<br>= All content | Earth Science Phenomena (<br>phenomena that are observ-<br>ut to promote further enquir<br>nat is both searchable and co<br>other geospatial informatio<br>nation could be retrieved.<br>Features:<br>gital journal with NO fees for<br>ed <u>micro-articles</u> are peer re-<br>ent is open access and can<br>s covered by Google Schola | JESP) is an open access journ<br>ved in Earth science data. The<br>y, document unique phenome<br>itable. The online nature of the<br>n through Google Earth Techn<br>or submitting or accessing the<br>eviewed and the time from sub-<br>be re-used with proper attribu-<br>ar | nal aimed at publish<br>e primary aim of this<br>ena, assist education<br>ne journal also provi<br>nology and also exp<br>e journal content<br>omission to publicat<br>ution | ing micro-artic<br>journal is not<br>nal activities a<br>de for includin<br>licit references | cles cataloging inte<br>to report a detailed<br>nd compile the info<br>og geographic conte<br>s to online databas | resting<br>  scientific<br>rmation in<br>ext,<br>es where |
| Micro-Articl What is a r Benefits of Text Resize | es<br>nicro-article?<br>micro-article                           | Smoke<br>November 1                                                                                                                               | <b>from an Oil Refin</b><br>b, 2009 by rramachandran                                                                                                                                                                                                                                                                                      | iery Fire in Puerto                                                                                                                                                                                                                                                            | Rico                                                                                                                                                                         |                                                                                              |                                                                                                                   |                                                           |
| Phenomena                                        | Locations                                                       |                                                                                                                                                   | SI PI                                                                                                                                                                                                                                                                                                                                     | moke from an Oil Refinery Fire i<br>henomena, 2009, 15                                                                                                                                                                                                                         | n Puerto Rico, Rahul                                                                                                                                                         | Ramachandrar                                                                                 | n, Journal of Earth So                                                                                            | cience                                                    |



Search

### **Submission Guidelines**

#### Journal of Earth Science Phenomena





Search

### Dr. Rahul Ramachandran

<u>rahul.ramachandran@uah.edu</u> <u>http://www.rramachandran.com/</u>

